skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gu, Chao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report what we believe to be a novel and unique approach for achieving high-performance and broadband THz phase shifting based on spatially-resolved photoconductivity modulation (SRPM). By changing the illumination area on a hybrid Au-Ge mesa-array (AGMA) structure in front of an indium tin oxide (ITO) layer for local photoconductivity modulation, the phase difference between the incident- and reflected-waves can be tuned nearly continuously with extremely low reflection loss. For a prototype demonstration, a photonically-driven THz phase shifting device based on the WR-5.1 (140-220 GHz) waveguide configuration was designed, modeled and simulated. To achieve phase tuning in the range of 0° to -180° at 180 GHz (band center frequency), a mesa-array consisting of 12 × 6 unit cells (each 105 μm × 105 μm) was designed, and a distancedof 250 μm between the AGMA and ITO was used. The SRPM is accomplished using computer-generated light patterns from a closely-coupled micro-LED array for through-ITO illumination, without the need for any biasing circuitry. Full wave simulation results have shown that pseudo-continuous and broadband phase shifting can be achieved in the entire WR-5.1 band, and a shifting range of 0° to -180° at 180 GHz can be realized as designed. In addition, by using light patterns of different combinations of vertical strips, a fine phase tuning step as small as ∼0.05° can be demonstrated. For all phase tuning states, the simulated reflection loss is generally less than 1 dB with low loss variation. The proposed technology for high-performance THz phase modulation is promising and powerful, while offering far more design flexibility and frequency scalability than the current state-of-the-art since it requires no biasing wires thus eliminating parasitic-related performance degradation. Therefore, this technology is suitable for the development of large-scale THz phased-arrays, reconfigurable reflectarrays, and tunable metasurfaces for dynamic beam steering/forming required in next generation (6G or beyond) wireless communications. 
    more » « less
  2. The 1S hyperfine splitting in hydrogen is measured to an impressive ppt precision and will soon be measured to ppm precision in muonic hydrogen. The latter measurement will rely on theoretical predictions, which are limited by knowledge of the proton polarizability effect Δpol. Data-driven evaluations of Δpol have long been in significant tension with baryon chiral perturbation theory. Here we present improved results for Δpol driven by new spin structure data, reducing the long-standing tension between theory and experiment and halving the dominating uncertainty in hyperfine splitting calculations. 
    more » « less
    Free, publicly-accessible full text available November 5, 2025
  3. null (Ed.)
    Abstract Pear is a major fruit tree crop distributed worldwide, yet its breeding is a very time-consuming process. To facilitate molecular breeding and gene identification, here we have performed genome-wide association studies (GWAS) on eleven fruit traits. We identify 37 loci associated with eight fruit quality traits and five loci associated with three fruit phenological traits. Scans for selective sweeps indicate that traits including fruit stone cell content, organic acid and sugar contents might have been under continuous selection during breeding improvement. One candidate gene, PbrSTONE , identified in GWAS, has been functionally verified to be involved in the regulation of stone cell formation, one of the most important fruit quality traits in pear. Our study provides insights into the complex fruit related biology and identifies genes controlling important traits in pear through GWAS, which extends the genetic resources and basis for facilitating molecular breeding in perennial trees. 
    more » « less